一元二次方程根与系数的关系教案(1)一元二次方程(一)一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点 :正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的.过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.3.练习:指出下列方程,哪些是一元二次方程?(1)x(5x-2)=x(x+1)+4×2;(2)7×2+6=2x(3x+1);(3)一元二次方程根与系数的关系教案(2)一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。(二)重点、难点一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。(三)教学目标1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。2、能力目标:通过韦达定理的教学过程 ,使学生经历观察、实验、猜想、证明等数学活动过程 ,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。3、情感目标:通过情境教学过程 ,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。二、设计理念根据教材内容和本人研究的课题《初中数学问题引探教学实验研究》,在教学中渗透新课标的精神,注重过程数学,注重创新教学,注重问题意识,关注学生的学习兴趣和经验,让学生主动参与学习活动,主动探索并获取知识,教师是组织者、引导者、参与者。三、教法与学法(一)教法1、充分以学生为主体进行教学,让学生多实践,从实践中反思过程,让学生经历韦达定理的发生发展过程,并从中体验成功的乐趣。2、采用“实践(练习)——观察——发现——猜想——证明”的过程教学。引导学生发现问题,师生共同解决问题。3、分小组讨论交流,多渠道信息反馈。4、问题引探,启发诱导,进行创新教学。(二)学法指导1、引导学生实践、观察、发现问题、猜想并推理。2、指导学生掌握思考问题的方法及解决问题的途径。3、指导学生熟练掌握根与系数的关系,并将应用问题和规律归类。四、课时划分及教学过程(一)课时划分共分3课时第一课时1、根与系数的关系。2、根与系数的关系的应用。(1)求已知方程的两根的平方和、倒数和、两根差。第二课时1、已知两数求作新方程。2、由已知两根和与积的值或式子,求字母的值。第三课时方程判别式、根与系数的关系的综合应用。第一课时 一元二次方程根与系数的关系(1)一、教学目标1、理解掌握一元二次方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a、b、c之间的关系。2、能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知数。3、会求已知方程的两根的.倒数和与平方和、两根的差。4、在推导过程中,培养学生“观察——发现——猜想——证明”的研究问题的思想与方法。二、重难点根与系数的关系是重点,由于式子的抽象性,两根之和等于一次项系数除以二次项系数的相反数中的符号是学生理解和掌握的难点。三、教学过程(一)问题引探问题1.在方程ax2+bx+c=0中,a的取值决定什么?b2-4ac的取值呢?同学们可知道a、b、c的取值与一元二次方程ax2+bx+c=0的根还有其它关系?今天我们进一步研究一元二次方程的这种关系。问题2.解方程x2-5x+6=0,并先指出a、b、c各是多少,然后再解方程,计算两根的和与积,你能发现什么结论(现象)?问题3.解下列方程:(1)2×2+5x+3=0 (2)3×2-2x-2=0并根据问题2和以上的求解填写下表请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________.问题5.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。分小组讨论以上的问题,并作出推理证明。若方程ax2+bx+c=0(a≠0)的两根为x1=,x2= , 则x1+x2= + = ;x1 x2= · ==即:如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。由此得出一元二次方程的根与系数的关系;还可以让学生用自己的语言表述这种关系,来加深理解和记忆。这个关系是一个法国数学家韦达发现的,所以也称之为韦达定理。问题6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用吗?(引导学生反思性小结)①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b2-4ac可判定根的情况;④当a≠0,b2-4ac≥0时,x1+x2= ,x1x2=⑤当a≠0,c=0时,方程有一根为0。说明:1、本设计采用“实践——观察——发现——猜想——证明”的过程,使学生既动手又动脑,且又动口,教师引导启发,避免注入式地讲授一元二次方程根与系数的关系,体现学生的主体学习特性,培养了学生的创新意识和创新精神。2、本设计遵循由特殊到一般,从实践到理论(即从感性认识上升到理性认识)的认知规律。3、本设计注重了学生的反思过程,使学生将知识系统化、格式化。(二)尝试发展试一试:根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k是常数)(1)2×2-3x+1=0 x1+x2=________ x1x2=_________(2)3×2+5x=0 x1+x2=________ x1x2=__________(3)5×2+x-2=0 x1+x2=_________ x1x2=__________(4)5×2+kx-6=0 x1+x2=_________ x1x2=__________(此试一试作为巩固知识而用)尝试题1、已知方程6×2+kx-5=0的一个根为,求它的另一个根及k的值。组织学生自己分析解决,然后一学生演板,其余学生在草稿本上练习。学生练习:P32 2。尝试题2、利用根与系数的关系,求一元二次方程2×2-3x-1=0的两个根的(1)平方和,(2)倒数和。讨论:解上面问题的思路是什么?得出:x12+ x22=( x1+x2)2-2 x1x2; &nb一元二次方程根与系数的关系教案(3)一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的.操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?
此组别内的文章
- 甄宓:这个比貂婵还美的女人,活成了三国最大的悲剧
- 黄庭坚:我七岁时,便用一双慧眼,将世事看穿
- 宋代词人王观对柳永不服气,下笔写一首词,结果成千古绝唱!
- 庄子:最好的活法,物质简单,精神富足
- 唐朝开创交通立法的先河:不可随意进出城门
- 《中山狼传》全文注释翻译赏析
- 文言文中的这五十个名句,比诗词还美
- 夏日长长,宜于读书
- 秦桧后人中状元,路过岳飞墓前留下2句诗成千古名句
- 汉代法律内容的变化和特点
- 当代有哪些杰出的思想家?
- 七略四库中的四库是什么
- 归根结底,要通过怎样的方式传授国学?
- 进士及第,进士出身,同进士出身,有什么不一
- 鲁迅先生的精神是什么?
- 金刚经中,一切有如法,法代表什么意思?
- 中国历朝历代宗教信仰
- 民国最牛的国学大师是谁?
- 国外善于“自省”的名人有哪些?
- 立功立德立言的典型人物
- 继承与发展国学文化作文(对国学继承有什么看法
- 孟子的文学成就和地位表现在哪些方面?
- 儒家思想的发展历程和主要思想
- 儒家的主要书籍有哪些?
- 发扬国学文化应该怎么做(如何弘扬国学经典)
- 国学文化礼仪(国学文化礼仪知识)
- 古希腊哲学成就?
- 分析中国传统文化中经学,玄学,理学,心学等
- 儒家思想对后世的影响?
- 独步国学文化(独步文化官网)
- 古代科举考试会试是什么时候?有什么典故依据
- 国学文化香炉里面放硬币(香炉里放硬币讲究)
- 19世纪末有哪些伟大的哲学家?
- 清朝时期,蒙古具体分为哪几个大的部落?
- 弘扬国学文化的书法内容(弘扬中国传统文化的书
- 五大思想流派代表人物及主张?
- 三体人物智商排名?
- 苏格拉底,柏拉图,亚里士多德之间是什么关系
- 如何弘扬儒家文化思想?
- 马克思主义政治经济学的核心是什么?
- 明清时期有30位著名的医学家,你们知道都有哪些
- 什么是国学?易经算卦也是国学吗?
- 先秦时期儒家的代表人物及中心思想?
- 哲学家一般都具备那些特质?(性格特征等)
- 生肖是国学文化吗(十二生肖是文化吗)
- 百家讲坛 国学知识笔记
- 中国十大国学文化大师作品(中国当代十大国学大
- 人文主义兴起时间表?
- 古筝中最难弹的曲子是哪一首?
- 《诗经》和汉乐府诗的异同
暂无讨论,说说你的看法吧
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
-
¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!



